Articles

A Quick Guide for Computer-Assisted Instruction in Computational Biology and Bioinformatics

Manuel João Costa, Eduardo Galembeck, Guilherme A. Marson, Bayardo B. Torres Published by PLOS Computational Biology, April 2008

Computational Biology and Bioinformatics (CBB) are indispensable components in the training of life scientists. Current curricula in the life sciences should prepare graduates who master quantitative and computer skills for increased levels of performance. Equally important is that the application of the curricula is driven by an appropriate instructional paradigm and effective learning experiences. Teaching and learning with computers bring specific issues that should be considered beforehand by any instructor. The following Quick Guide for Computer-Assisted Instruction (CAI) outlines ten principles for effective teaching. The principles are aligned with current developments on human cognition and learning and have been drawn from our own experience using CAI in seminars, tutorials, and distance education, in courses on Molecular Life Sciences at the undergraduate level, taught to majors in biology or in other subjects (e.g., nutrition, teaching of physics and chemistry, teaching of biology, sports). The Guide refers to the preparation, presentation, and assessment of CAI. It should be an aid for those who teach CBB with CAI in class, and it is expected to stimulate student motivation and deeper learning in CBB, thus making class time more effective and improving satisfaction of both students and instructors.

Full article Related work

Insulin and leptin relations in obesity: a multimedia approach

Daniela K. Yokaichiya , Eduardo Galembeck , Bayardo B. Torres , José Antônio Da Silva , Daniele R. de Araujo Published by Advances in Physiology Education (ISSN: 1522-1229), September 2008

Obesity has been recognized as a worldwide public health problem. It significantly increases the chances of developing several diseases, including Type II diabetes. The roles of insulin and leptin in obesity involve reactions that can be better understood when they are presented step by step. The aim of this work was to design software with data from some of the most recent publications on obesity, especially those concerning the roles of insulin and leptin in this metabolic disturbance. The most notable characteristic of this software is the use of animations representing the cellular response together with the presentation of recently discovered mechanisms on the participation of insulin and leptin in processes leading to obesity. The software was field tested in the Biochemistry of Nutrition web-based course. After using the software and discussing its contents in chatrooms, students were asked to answer an evaluation survey about the whole activity and the usefulness of the software within the learning process. The teaching assistants (TA) evaluated the software as a tool to help in the teaching process. The students' and TAs' satisfaction was very evident and encouraged us to move forward with the software development and to improve the use of this kind of educational tool in biochemistry classes.

Full article Related work

A Quick Guide for Computer-Assisted Instruction in Computational Biology and Bioinformatics

Manuel João Costa, Eduardo Galembeck, Guilherme A. Marson, Bayardo B. Torres Published by Plos Computational Biology , April 2008

Computational Biology and Bioinformatics (CBB) are indispensable components in the training of life scientists [1][3]. Current curricula in the life sciences should prepare graduates who master quantitative and computer skills for increased levels of performance [4][6]. Equally important is that the application of the curricula is driven by an appropriate instructional paradigm and effective learning experiences. Teaching and learning with computers bring specific issues that should be considered beforehand by any instructor. The following Quick Guide for Computer-Assisted Instruction (CAI) outlines ten principles for effective teaching. The principles are aligned with current developments on human cognition and learning [7] and have been drawn from our own experience using CAI in seminars, tutorials, and distance education, in courses on Molecular Life Sciences at the undergraduate level, taught to majors in biology or in other subjects (e.g., nutrition, teaching of physics and chemistry, teaching of biology, sports). The Guide refers to the preparation, presentation, and assessment of CAI. It should be an aid for those who teach CBB with CAI in class, and it is expected to stimulate student motivation and deeper learning in CBB, thus making class time more effective and improving satisfaction of both students and instructors.

Full article Related work

Insulin and leptin relations in obesity: a multimedia approach

Daniela K. Yokaichiya, Eduardo Galembeck, Bayardo B. Torres, José Antônio Da Silva, and Daniele R. de Araujo Published by American Physiological Society, September 2008

Obesity has been recognized as a worldwide public health problem. It significantly increases the chances of developing several diseases, including Type II diabetes. The roles of insulin and leptin in obesity involve reactions that can be better understood when they are presented step by step. The aim of this work was to design software with data from some of the most recent publications on obesity, especially those concerning the roles of insulin and leptin in this metabolic disturbance. The most notable characteristic of this software is the use of animations representing the cellular response together with the presentation of recently discovered mechanisms on the participation of insulin and leptin in processes leading to obesity. The software was field tested in the Biochemistry of Nutrition web-based course. After using the software and discussing its contents in chatrooms, students were asked to answer an evaluation survey about the whole activity and the usefulness of the software within the learning process. The teaching assistants (TA) evaluated the software as a tool to help in the teaching process. The students' and TAs' satisfaction was very evident and encouraged us to move forward with the software development and to improve the use of this kind of educational tool in biochemistry classes.

Full article Related work

LTE 2024 - Educational Technology Lab - IB - UNICAMP